3.727 \(\int \frac{(d+e x)^{5/2} (f+g x)^{5/2}}{(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}} \, dx\)

Optimal. Leaf size=289 \[ \frac{5 g^2 \sqrt{f+g x} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c^3 d^3 \sqrt{d+e x}}+\frac{5 g^{3/2} \sqrt{d+e x} \sqrt{a e+c d x} (c d f-a e g) \tanh ^{-1}\left (\frac{\sqrt{g} \sqrt{a e+c d x}}{\sqrt{c} \sqrt{d} \sqrt{f+g x}}\right )}{c^{7/2} d^{7/2} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac{10 g \sqrt{d+e x} (f+g x)^{3/2}}{3 c^2 d^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac{2 (d+e x)^{3/2} (f+g x)^{5/2}}{3 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \]

[Out]

(-2*(d + e*x)^(3/2)*(f + g*x)^(5/2))/(3*c*d*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)) - (10*g*Sqrt[d + e*
x]*(f + g*x)^(3/2))/(3*c^2*d^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) + (5*g^2*Sqrt[f + g*x]*Sqrt[a*d*e
+ (c*d^2 + a*e^2)*x + c*d*e*x^2])/(c^3*d^3*Sqrt[d + e*x]) + (5*g^(3/2)*(c*d*f - a*e*g)*Sqrt[a*e + c*d*x]*Sqrt[
d + e*x]*ArcTanh[(Sqrt[g]*Sqrt[a*e + c*d*x])/(Sqrt[c]*Sqrt[d]*Sqrt[f + g*x])])/(c^(7/2)*d^(7/2)*Sqrt[a*d*e + (
c*d^2 + a*e^2)*x + c*d*e*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.431764, antiderivative size = 289, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 48, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125, Rules used = {866, 870, 891, 63, 217, 206} \[ \frac{5 g^2 \sqrt{f+g x} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{c^3 d^3 \sqrt{d+e x}}+\frac{5 g^{3/2} \sqrt{d+e x} \sqrt{a e+c d x} (c d f-a e g) \tanh ^{-1}\left (\frac{\sqrt{g} \sqrt{a e+c d x}}{\sqrt{c} \sqrt{d} \sqrt{f+g x}}\right )}{c^{7/2} d^{7/2} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac{10 g \sqrt{d+e x} (f+g x)^{3/2}}{3 c^2 d^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac{2 (d+e x)^{3/2} (f+g x)^{5/2}}{3 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[((d + e*x)^(5/2)*(f + g*x)^(5/2))/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]

[Out]

(-2*(d + e*x)^(3/2)*(f + g*x)^(5/2))/(3*c*d*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)) - (10*g*Sqrt[d + e*
x]*(f + g*x)^(3/2))/(3*c^2*d^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) + (5*g^2*Sqrt[f + g*x]*Sqrt[a*d*e
+ (c*d^2 + a*e^2)*x + c*d*e*x^2])/(c^3*d^3*Sqrt[d + e*x]) + (5*g^(3/2)*(c*d*f - a*e*g)*Sqrt[a*e + c*d*x]*Sqrt[
d + e*x]*ArcTanh[(Sqrt[g]*Sqrt[a*e + c*d*x])/(Sqrt[c]*Sqrt[d]*Sqrt[f + g*x])])/(c^(7/2)*d^(7/2)*Sqrt[a*d*e + (
c*d^2 + a*e^2)*x + c*d*e*x^2])

Rule 866

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(e*(d + e*x)^(m - 1)*(f + g*x)^n*(a + b*x + c*x^2)^(p + 1))/(c*(p + 1)), x] - Dist[(e*g*n)/(c*(p + 1)), I
nt[(d + e*x)^(m - 1)*(f + g*x)^(n - 1)*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &&
 NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0] &
& LtQ[p, -1] && GtQ[n, 0]

Rule 870

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
-Simp[(e*(d + e*x)^(m - 1)*(f + g*x)^n*(a + b*x + c*x^2)^(p + 1))/(c*(m - n - 1)), x] - Dist[(n*(c*e*f + c*d*g
 - b*e*g))/(c*e*(m - n - 1)), Int[(d + e*x)^m*(f + g*x)^(n - 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c,
 d, e, f, g, m, p}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !Integ
erQ[p] && EqQ[m + p, 0] && GtQ[n, 0] && NeQ[m - n - 1, 0] && (IntegerQ[2*p] || IntegerQ[n])

Rule 891

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Dist[(a + b*x + c*x^2)^FracPart[p]/((d + e*x)^FracPart[p]*(a/d + (c*x)/e)^FracPart[p]), Int[(d + e*x)^(m + p)*
(f + g*x)^n*(a/d + (c*x)/e)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2
 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] &&  !IGtQ[m, 0] &&  !IGtQ[n, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(d+e x)^{5/2} (f+g x)^{5/2}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx &=-\frac{2 (d+e x)^{3/2} (f+g x)^{5/2}}{3 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac{(5 g) \int \frac{(d+e x)^{3/2} (f+g x)^{3/2}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx}{3 c d}\\ &=-\frac{2 (d+e x)^{3/2} (f+g x)^{5/2}}{3 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac{10 g \sqrt{d+e x} (f+g x)^{3/2}}{3 c^2 d^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac{\left (5 g^2\right ) \int \frac{\sqrt{d+e x} \sqrt{f+g x}}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{c^2 d^2}\\ &=-\frac{2 (d+e x)^{3/2} (f+g x)^{5/2}}{3 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac{10 g \sqrt{d+e x} (f+g x)^{3/2}}{3 c^2 d^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac{5 g^2 \sqrt{f+g x} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{c^3 d^3 \sqrt{d+e x}}+\frac{\left (5 g^2 (c d f-a e g)\right ) \int \frac{\sqrt{d+e x}}{\sqrt{f+g x} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{2 c^3 d^3}\\ &=-\frac{2 (d+e x)^{3/2} (f+g x)^{5/2}}{3 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac{10 g \sqrt{d+e x} (f+g x)^{3/2}}{3 c^2 d^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac{5 g^2 \sqrt{f+g x} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{c^3 d^3 \sqrt{d+e x}}+\frac{\left (5 g^2 (c d f-a e g) \sqrt{a e+c d x} \sqrt{d+e x}\right ) \int \frac{1}{\sqrt{a e+c d x} \sqrt{f+g x}} \, dx}{2 c^3 d^3 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\\ &=-\frac{2 (d+e x)^{3/2} (f+g x)^{5/2}}{3 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac{10 g \sqrt{d+e x} (f+g x)^{3/2}}{3 c^2 d^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac{5 g^2 \sqrt{f+g x} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{c^3 d^3 \sqrt{d+e x}}+\frac{\left (5 g^2 (c d f-a e g) \sqrt{a e+c d x} \sqrt{d+e x}\right ) \operatorname{Subst}\left (\int \frac{1}{\sqrt{f-\frac{a e g}{c d}+\frac{g x^2}{c d}}} \, dx,x,\sqrt{a e+c d x}\right )}{c^4 d^4 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\\ &=-\frac{2 (d+e x)^{3/2} (f+g x)^{5/2}}{3 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac{10 g \sqrt{d+e x} (f+g x)^{3/2}}{3 c^2 d^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac{5 g^2 \sqrt{f+g x} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{c^3 d^3 \sqrt{d+e x}}+\frac{\left (5 g^2 (c d f-a e g) \sqrt{a e+c d x} \sqrt{d+e x}\right ) \operatorname{Subst}\left (\int \frac{1}{1-\frac{g x^2}{c d}} \, dx,x,\frac{\sqrt{a e+c d x}}{\sqrt{f+g x}}\right )}{c^4 d^4 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\\ &=-\frac{2 (d+e x)^{3/2} (f+g x)^{5/2}}{3 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac{10 g \sqrt{d+e x} (f+g x)^{3/2}}{3 c^2 d^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac{5 g^2 \sqrt{f+g x} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{c^3 d^3 \sqrt{d+e x}}+\frac{5 g^{3/2} (c d f-a e g) \sqrt{a e+c d x} \sqrt{d+e x} \tanh ^{-1}\left (\frac{\sqrt{g} \sqrt{a e+c d x}}{\sqrt{c} \sqrt{d} \sqrt{f+g x}}\right )}{c^{7/2} d^{7/2} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\\ \end{align*}

Mathematica [C]  time = 0.150803, size = 102, normalized size = 0.35 \[ -\frac{2 (d+e x)^{3/2} (f+g x)^{5/2} \, _2F_1\left (-\frac{5}{2},-\frac{3}{2};-\frac{1}{2};\frac{g (a e+c d x)}{a e g-c d f}\right )}{3 c d ((d+e x) (a e+c d x))^{3/2} \left (\frac{c d (f+g x)}{c d f-a e g}\right )^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[((d + e*x)^(5/2)*(f + g*x)^(5/2))/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]

[Out]

(-2*(d + e*x)^(3/2)*(f + g*x)^(5/2)*Hypergeometric2F1[-5/2, -3/2, -1/2, (g*(a*e + c*d*x))/(-(c*d*f) + a*e*g)])
/(3*c*d*((a*e + c*d*x)*(d + e*x))^(3/2)*((c*d*(f + g*x))/(c*d*f - a*e*g))^(5/2))

________________________________________________________________________________________

Maple [B]  time = 0.383, size = 652, normalized size = 2.3 \begin{align*} -{\frac{1}{6\, \left ( cdx+ae \right ) ^{2}{c}^{3}{d}^{3}} \left ( 15\,\ln \left ( 1/2\,{\frac{2\,xcdg+aeg+cdf+2\,\sqrt{ \left ( cdx+ae \right ) \left ( gx+f \right ) }\sqrt{cdg}}{\sqrt{cdg}}} \right ){x}^{2}a{c}^{2}{d}^{2}e{g}^{3}-15\,\ln \left ( 1/2\,{\frac{2\,xcdg+aeg+cdf+2\,\sqrt{ \left ( cdx+ae \right ) \left ( gx+f \right ) }\sqrt{cdg}}{\sqrt{cdg}}} \right ){x}^{2}{c}^{3}{d}^{3}f{g}^{2}+30\,\ln \left ( 1/2\,{\frac{2\,xcdg+aeg+cdf+2\,\sqrt{ \left ( cdx+ae \right ) \left ( gx+f \right ) }\sqrt{cdg}}{\sqrt{cdg}}} \right ) x{a}^{2}cd{e}^{2}{g}^{3}-30\,\ln \left ( 1/2\,{\frac{2\,xcdg+aeg+cdf+2\,\sqrt{ \left ( cdx+ae \right ) \left ( gx+f \right ) }\sqrt{cdg}}{\sqrt{cdg}}} \right ) xa{c}^{2}{d}^{2}ef{g}^{2}+15\,\ln \left ( 1/2\,{\frac{2\,xcdg+aeg+cdf+2\,\sqrt{ \left ( cdx+ae \right ) \left ( gx+f \right ) }\sqrt{cdg}}{\sqrt{cdg}}} \right ){a}^{3}{e}^{3}{g}^{3}-15\,\ln \left ( 1/2\,{\frac{2\,xcdg+aeg+cdf+2\,\sqrt{ \left ( cdx+ae \right ) \left ( gx+f \right ) }\sqrt{cdg}}{\sqrt{cdg}}} \right ){a}^{2}cd{e}^{2}f{g}^{2}-6\,{x}^{2}{c}^{2}{d}^{2}{g}^{2}\sqrt{ \left ( cdx+ae \right ) \left ( gx+f \right ) }\sqrt{cdg}-40\,\sqrt{cdg}\sqrt{ \left ( cdx+ae \right ) \left ( gx+f \right ) }xacde{g}^{2}+28\,\sqrt{cdg}\sqrt{ \left ( cdx+ae \right ) \left ( gx+f \right ) }x{c}^{2}{d}^{2}fg-30\,\sqrt{ \left ( cdx+ae \right ) \left ( gx+f \right ) }\sqrt{cdg}{a}^{2}{e}^{2}{g}^{2}+20\,\sqrt{ \left ( cdx+ae \right ) \left ( gx+f \right ) }\sqrt{cdg}acdefg+4\,\sqrt{ \left ( cdx+ae \right ) \left ( gx+f \right ) }\sqrt{cdg}{c}^{2}{d}^{2}{f}^{2} \right ) \sqrt{cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade}\sqrt{gx+f}{\frac{1}{\sqrt{ \left ( cdx+ae \right ) \left ( gx+f \right ) }}}{\frac{1}{\sqrt{cdg}}}{\frac{1}{\sqrt{ex+d}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(5/2)*(g*x+f)^(5/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x)

[Out]

-1/6*(15*ln(1/2*(2*x*c*d*g+a*e*g+c*d*f+2*((c*d*x+a*e)*(g*x+f))^(1/2)*(c*d*g)^(1/2))/(c*d*g)^(1/2))*x^2*a*c^2*d
^2*e*g^3-15*ln(1/2*(2*x*c*d*g+a*e*g+c*d*f+2*((c*d*x+a*e)*(g*x+f))^(1/2)*(c*d*g)^(1/2))/(c*d*g)^(1/2))*x^2*c^3*
d^3*f*g^2+30*ln(1/2*(2*x*c*d*g+a*e*g+c*d*f+2*((c*d*x+a*e)*(g*x+f))^(1/2)*(c*d*g)^(1/2))/(c*d*g)^(1/2))*x*a^2*c
*d*e^2*g^3-30*ln(1/2*(2*x*c*d*g+a*e*g+c*d*f+2*((c*d*x+a*e)*(g*x+f))^(1/2)*(c*d*g)^(1/2))/(c*d*g)^(1/2))*x*a*c^
2*d^2*e*f*g^2+15*ln(1/2*(2*x*c*d*g+a*e*g+c*d*f+2*((c*d*x+a*e)*(g*x+f))^(1/2)*(c*d*g)^(1/2))/(c*d*g)^(1/2))*a^3
*e^3*g^3-15*ln(1/2*(2*x*c*d*g+a*e*g+c*d*f+2*((c*d*x+a*e)*(g*x+f))^(1/2)*(c*d*g)^(1/2))/(c*d*g)^(1/2))*a^2*c*d*
e^2*f*g^2-6*x^2*c^2*d^2*g^2*((c*d*x+a*e)*(g*x+f))^(1/2)*(c*d*g)^(1/2)-40*(c*d*g)^(1/2)*((c*d*x+a*e)*(g*x+f))^(
1/2)*x*a*c*d*e*g^2+28*(c*d*g)^(1/2)*((c*d*x+a*e)*(g*x+f))^(1/2)*x*c^2*d^2*f*g-30*((c*d*x+a*e)*(g*x+f))^(1/2)*(
c*d*g)^(1/2)*a^2*e^2*g^2+20*((c*d*x+a*e)*(g*x+f))^(1/2)*(c*d*g)^(1/2)*a*c*d*e*f*g+4*((c*d*x+a*e)*(g*x+f))^(1/2
)*(c*d*g)^(1/2)*c^2*d^2*f^2)*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(1/2)*(g*x+f)^(1/2)/((c*d*x+a*e)*(g*x+f))^(1/2)
/(c*d*g)^(1/2)/(c*d*x+a*e)^2/c^3/d^3/(e*x+d)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (e x + d\right )}^{\frac{5}{2}}{\left (g x + f\right )}^{\frac{5}{2}}}{{\left (c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)*(g*x+f)^(5/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="maxima")

[Out]

integrate((e*x + d)^(5/2)*(g*x + f)^(5/2)/(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)^(5/2), x)

________________________________________________________________________________________

Fricas [A]  time = 7.14982, size = 2183, normalized size = 7.55 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)*(g*x+f)^(5/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="fricas")

[Out]

[1/12*(4*(3*c^2*d^2*g^2*x^2 - 2*c^2*d^2*f^2 - 10*a*c*d*e*f*g + 15*a^2*e^2*g^2 - 2*(7*c^2*d^2*f*g - 10*a*c*d*e*
g^2)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)*sqrt(g*x + f) - 15*(a^2*c*d^2*e^2*f*g - a^3*
d*e^3*g^2 + (c^3*d^3*e*f*g - a*c^2*d^2*e^2*g^2)*x^3 + ((c^3*d^4 + 2*a*c^2*d^2*e^2)*f*g - (a*c^2*d^3*e + 2*a^2*
c*d*e^3)*g^2)*x^2 + ((2*a*c^2*d^3*e + a^2*c*d*e^3)*f*g - (2*a^2*c*d^2*e^2 + a^3*e^4)*g^2)*x)*sqrt(g/(c*d))*log
(-(8*c^2*d^2*e*g^2*x^3 + c^2*d^3*f^2 + 6*a*c*d^2*e*f*g + a^2*d*e^2*g^2 + 8*(c^2*d^2*e*f*g + (c^2*d^3 + a*c*d*e
^2)*g^2)*x^2 - 4*(2*c^2*d^2*g*x + c^2*d^2*f + a*c*d*e*g)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x
+ d)*sqrt(g*x + f)*sqrt(g/(c*d)) + (c^2*d^2*e*f^2 + 2*(4*c^2*d^3 + 3*a*c*d*e^2)*f*g + (8*a*c*d^2*e + a^2*e^3)*
g^2)*x)/(e*x + d)))/(c^5*d^5*e*x^3 + a^2*c^3*d^4*e^2 + (c^5*d^6 + 2*a*c^4*d^4*e^2)*x^2 + (2*a*c^4*d^5*e + a^2*
c^3*d^3*e^3)*x), 1/6*(2*(3*c^2*d^2*g^2*x^2 - 2*c^2*d^2*f^2 - 10*a*c*d*e*f*g + 15*a^2*e^2*g^2 - 2*(7*c^2*d^2*f*
g - 10*a*c*d*e*g^2)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)*sqrt(g*x + f) - 15*(a^2*c*d^2
*e^2*f*g - a^3*d*e^3*g^2 + (c^3*d^3*e*f*g - a*c^2*d^2*e^2*g^2)*x^3 + ((c^3*d^4 + 2*a*c^2*d^2*e^2)*f*g - (a*c^2
*d^3*e + 2*a^2*c*d*e^3)*g^2)*x^2 + ((2*a*c^2*d^3*e + a^2*c*d*e^3)*f*g - (2*a^2*c*d^2*e^2 + a^3*e^4)*g^2)*x)*sq
rt(-g/(c*d))*arctan(2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)*sqrt(g*x + f)*c*d*sqrt(-g/(c*d
))/(2*c*d*e*g*x^2 + c*d^2*f + a*d*e*g + (c*d*e*f + (2*c*d^2 + a*e^2)*g)*x)))/(c^5*d^5*e*x^3 + a^2*c^3*d^4*e^2
+ (c^5*d^6 + 2*a*c^4*d^4*e^2)*x^2 + (2*a*c^4*d^5*e + a^2*c^3*d^3*e^3)*x)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(5/2)*(g*x+f)**(5/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{0} x \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(5/2)*(g*x+f)^(5/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="giac")

[Out]

sage0*x